FMotifs Guide

V2.0

© Massimiliano Zanin, 2013
Centre for Biomedical Technology, UPM
Madrid, Spain

General information

FMotifs is a program for the exhaustive counting of 3-nodes motifs. Thanks to its
internal structure, it is especially suited for the study of medium-size networks
with high link density, e.g. functional network representation reconstruction of
brain dynamics.

Copyright: Massimiliano Zanin, 2013.
Contact email: massimiliano.zanin@ctb.upm.es

FMotifs Version: 2.0
This guide version: 2.0

Availability: The program for Windows environment, as well as C++ source
code are available at www.mzanin.com

Changes history

Version 2.0

Added support for parallel computation.

Disconnected nodes are now disregarded from the computation.
Error log file generated in case of unexpected events.

General performance improvements.

Version 1.0
Initial version of the program.

The idea behind FMotifs

Motifs! are one of the simplest and yet of the most powerful topological
characteristics that can be assessed in a network, defined as specific patterns of
interconnections created by a small number of connected nodes.

While motifs have traditionally been used to characterize large networks, e.g.
transcriptional regulation networks, they have recently been applied to the study
of functional network representations of brain dynamics2. While such networks
are usually small, of the order of hundreds of nodes, their high link density poses
a challenge for traditional algorithms that are designed for the study of large
sparse graphs.

FMotifs is a software designed to handle such situations, by performing
exhaustive 3-nodes motifs enumeration in medium-size dense networks. The
computational cost mainly depends on the number of nodes, with link density
having little effect on the time required to obtain the result. As an example, for a
network of 150 nodes and link density of 0.5, the computation time is reduced
from 10.6 seconds of the MFINDER tool3, down to 0.10 seconds. FMotifs has been
designed for a simple integration with other programs, e.g. MATLAB, thus
allowing the batch analysis of large sets of networks. Furthermore, it takes
advantage of multi-core processors through OpenMP, enabling important speed
improvements when such hardware is available.

1 Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002).
Network motifs: simple building blocks of complex networks. Science, 298(5594),
824.

2 Zanin, M,, Sousa, P., Papo, D., Bajo, R, Garcia-Prieto, |., del Pozo, F., Menasalvas,
E., & Boccaletti, S. (2012). Optimizing Functional Network Representation of
Multivariate Time Series. Scientific Reports, 2.

3 Kashtan, N., Itzkovitz, S., Milo, R., & Alon, U. (2002). Mfinder tool guide.
Department of Molecular Cell Biology and Computer Science and Applied
Mathematics, Weizmann Institute of Science, Rehovot Israel, Tech. Rep.

Using FMotifs

Installation
FMotifs is available in two forms:

1. A command-line executable for Windows environments. Just download
FMotifs.exe into your working directory, and execute it with the
appropriate command line options. In order to work correctly, two DLL
files are needed (included in the distribution): libgomp-1.dll and
pthreadGC2.dll.

2. A C++ class, which can be used in any custom development.

Executing FMotifs at the command prompt

FMotifs.exe <input network file name> [-am | -par]

Calculates the motifs for the input file specified. Network should be codified in a
raw text format (e.g., a txt file), specifying each one of the links. The format for
links should be the following:

<source node> <tab> <destination node> <tab> <weight>

For instance, the following text describes a network of three nodes connected in
a triangular motif:

1 2 1
2 3 1
3 1 1

Notice that the weight of links is disregarded, and is included in the input file for
compatibility with other programs, e.g. MFINDER. Node numbering can both
start from zero or one, as the program will automatically disregard any
unconnected node. The output is saved in a text file, with each row specifying the
number of instances detected for each motif. The output file name is:

<input network file name>_MAT.txt

The previous example would result in the following output:

OO UTLH WD -

SO OCO R OO OOOO OO

Thus, only one instance of motif number 9 has been detected. The numeration of
motifs follows the usual convention, i.e.:

g R R R
e R
> b

The -am option
Calculates the motifs for the input file specified, with the network formatted as
an adjacency matrix. The previous example would read:

= o o
S O -
(=]

The -par option

Enables the multi-core parallel processing of the input file, implemented in
OpenMP#. The program firstly detects the number of cores available in the
machine, for then splitting the computation into different instances. This results
in a reduction of the computational cost proportional to the number of cores
(results may vary depending on the machine architecture).

FMotifs.exe -info
Returns information about the program, including its version.

Example networks

Two example networks are provided at www.mzanin.com/FMotifs, representing
the brain activity of a control subject, and of a patient suffering from Mild
Cognitive Impairment. For further information, please refer to:

Zanin, M., Sousa, P., Papo, D., Bajo, R, Garcia-Prieto,]., del Pozo, F., Menasalvas, E.,
& Boccaletti, S. (2012). Optimizing Functional Network Representation of
Multivariate Time Series. Scientific Reports, 2.

Integration with 3™ party software

One of the aims behind the creation of FMotifs was the development of a tool that
could be easily integrated with 34 party software, in order to perform
automated analysis of large network collections. In what follows, we present an
example of how this integration can be performed with a MATLAB program. The
example is organized in three parts: preparing a file with the input, execution of
FMotifs, and loading the results into MATLAB.

1. Preparing the input

Let us suppose one is to analyze a network that is stored in a matrix AM, of size
7 X 7, n being the number of nodes. Each element of the matrix has a value of 1
when a link exists between the two considered nodes, and 0 otherwise. The
following code saves this network in a format suitable to be analyzed by FMotifs:

4 For more information, please refer to http://www.openmp.org.

fid = fopen(fileName, 'wt');
forn1 =1 : numNodes
for n2 =1 : numNodes

if N1 ==n2
continue;
end
if AM(n1, n2) ==
fprintf(fid, '%d\t%d\t1\n’, n1, n2);
end
end
end
fclose(fid);

Notice that filename codifies the name of the destination file, and numNodes the
number of nodes composing the network.

2. Executing FMotifs

Once the input network has been saved to the file filename, the following code
will execute FMotifs:

myCommand = ['FMotifs.exe ' fileName];
[status, result] = system(myCommand);

In order to avoid errors, the program FMotifs.exe should be in the same directory
of the MATLAB script, or in a directory accessible through its path. Furthermore,
if one wants to take advantage of the parallel capabilities of FMotifs, the first line
should be modified as follows:

myCommand = ['FMotifs.exe ' filename ‘ -par];

3. Retrieving the results
Finally, the motifs should be retrieved from the output file, whose name will be

the same as the input file, plus a “_MAT” ending. The following code retrieves
such results, and stores them in a motif vector:

tempRes = load(fleNameOut);
motifs = tempRes(:, 2);

Notice that fileNameOut encodes the name of the file where outputs are returned.

Finally, it may be useful to delete the two intermediate files that have been
created in this process; this can be performed with the following code:

delete(fileName);
delete(fileNameOut);

Using the FastMotifs3 class in a C++ program
Instead of executing FMotifs from an external program, it may be useful to
directly integrate its code inside a custom C++ software, thus avoiding the files

writing/reading steps. In what follows, two situations are considered: a standard
analysis, and a parallel analysis.

Standard, single-thread analysis

As a first step, it is necessary to initialize the FastMotifs3 class, and allocate the
necessary memory for storing the adjacency matrix:

FastMotifs3 *myMotifs = new FastMotifs3();
myMotifs->AllocMemory(numNodes);

As in the previous example, numNodes codifies the number of nodes composing
the network. Next, it is necessary to fill the adjacency matrix with the values
corresponding to the analyzed networks; in what follows, we suppose this
information is stored in the myNet array:

memcpy(myMotifs->AM, myNet, sizeof(bool) * numNodes * numNodes);

Finally, the main function of the class should be called:

myMotifs->CalculateMotifs();

Results are stored in the myMotifs->Motifs array, which can be accessed for any
subsequent computation.

Standard, single-thread analysis

The second example we proposes deals with the enumeration of motifs in large
networks; in such cases, it may be useful to “split” the calculation in different
parts, so that each one of them can be executed in different CPUs.

The first part of the process, involving the class initialization and the network
information preparation, is the same as exposed above:

FastMotifs3 *myMotifs = new FastMotifs3();
myMotifs->AllocMemory(numNodes);
memcpy(myMotifs->AM, myNet, sizeof(bool) * numNodes * numNodes);

The actual motif enumeration is performed by means of the following two
functions:

myMotifs->ParCreatelndices(num_cores);
myMotifs->ParCalculateMotifs(act_core);

The first one, ParCreatelndices, splits the computation among different parts,
here indicated by the variable num_cores. Next, the function ParCalculateMotifs
enumerates the motifs that are present in the ith part, as defined by act_core. For
the sake of clarity, let us suppose that the calculation is splitted in two parts. The
first program should then execute:

myMotifs->ParCreatelndices(2);
myMotifs->ParCalculateMotifs(0);

while the second program:

myMotifs->ParCreatelndices(2);
myMotifs->ParCalculateMotifs(1);

The total number of motifs is then given by the sum of the results obtained by
both programs.

